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Exam code

• Exam on Dec 21 (7:30-)8:00-9:40 at Dong Shang Yuan 407 (lecture 
classroom)

• Finish the exam paper by yourself

• Allowed:
• Calculator, watch (not smart)

• Not allowed:
• Books, materials, cheat sheet, …

• Phones, any smart device

• No entering after 8:30

• Early submission period: 8:30--
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Grading policy 

• Attendance and participance: 5%

• Assignments: 35%

• Midterm exam: 20%

• Project: 10%

• Final exam: 30%
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Covered topics

• Basics
• Graphs, paths/walks/cycles, bipartite graphs

• Connectivity

• Trees

• Matchings

• Coloring

• Planarity

• Ramsey Theory
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Basic Concepts
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Graphs

• A graph 𝐺 is a pair (𝑉, 𝐸)
• 𝑉: set of vertices

• 𝐸: set of edges

• 𝑒 ∈ 𝐸 corresponds to a pair of endpoints 𝑥, 𝑦 ∈ 𝑉

• Two graphs 𝐺1 = 𝑉1, 𝐸1 , 𝐺1 = 𝑉2, 𝐸2 are isomorphic if there is a 
bijection 𝑓: 𝑉1 → 𝑉2 s.t.

𝑒 = 𝑎, 𝑏 ∈ 𝐸1 ⟺ 𝑓 𝑒 := 𝑓(𝑎), 𝑓(𝑏) ∈ 𝐸2
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We mainly focus on
Simple graph:
No loops, no multi-edges



Example: Complete graphs

• There is an edge between every pair of vertices
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Example: Regular graphs

• Every vertex has the same degree
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Example: Bipartite graphs

• The vertex set can be partitioned into two sets 𝑋 and 𝑌 such that 
every edge in 𝐺 has one end vertex in 𝑋 and the other in 𝑌

• Complete bipartite graphs
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Example (1A, L): Peterson graph

• Show that the following two graphs are same/isomorphic
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Subgraphs

• A subgraph of a graph 𝐺 is a graph 𝐻 such that 
𝑉 𝐻 ⊆ 𝑉 𝐺 , 𝐸 𝐻 ⊆ 𝐸 𝐺

and the ends of an edge 𝑒 ∈ 𝐸(𝐻) are the same as its ends in 𝐺
• 𝐻 is a spanning subgraph when 𝑉(𝐻) = 𝑉(𝐺)

• The subgraph of 𝐺 induced by a subset 𝑆 ⊆ 𝑉(𝐺) is the subgraph whose 
vertex set is 𝑆 and whose edges are all the edges of 𝐺 with both ends in 𝑆
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Paths (路径)

• A path is a nonempty graph 𝑃 = (𝑉, 𝐸) of the form
𝑉 = 𝑥0, 𝑥1, … , 𝑥𝑘 𝐸 = 𝑥0𝑥1, 𝑥1𝑥2, … , 𝑥𝑘−1𝑥𝑘

where the 𝑥𝑖 are all distinct

• 𝑃𝑘: path of length 𝑘 (the number of edges)
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Walk (游走)

• A walk is a non-empty alternating sequence 𝑣0𝑒1𝑣1𝑒2…𝑒𝑘𝑣𝑘
• The vertices not necessarily distinct

• The length = the number of edges

• Proposition (1.2.5, W) Every 𝑢-𝑣 walk contains a 𝑢-𝑣 path
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Cycles (环)

• If 𝑃 = 𝑥0𝑥1…𝑥𝑘−1 is a path and 𝑘 ≥ 3, then the graph 𝐶 ≔ 𝑃 +
𝑥𝑘−1𝑥0 is called a cycle

• 𝐶𝑘: cycle of length 𝑘 (the number of edges/vertices)

• Proposition (1.2.15, W) Every closed odd walk contains an odd cycle

14



Neighbors and degree

• Two vertices 𝑎 ≠ 𝑏 are called adjacent if they are joined by an edge
• 𝑁(𝑥): set of all vertices adjacent to 𝑥

• neighbors of 𝑥

• A vertex is isolated vertex if it has no neighbors
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Handshaking Theorem (Euler 1736)

• Theorem  A finite graph 𝐺 has an even number of vertices with 
odd degree.

• Proof  The degree of 𝑥 is the number of times it appears 
in the right column. Thus



𝑥∈𝑉(𝐺)

deg(𝑥) = 2 𝐸(𝐺)
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Degree

• Minimal degree of 𝐺: 𝛿 𝐺 = min 𝑑 𝑣 : 𝑣 ∈ 𝑉

• Maximal degree of 𝐺: ∆ 𝐺 = min 𝑑 𝑣 : 𝑣 ∈ 𝑉

• Average degree of 𝐺: 𝑑 𝐺 =
1

𝑉
σ𝑣∈𝑉 𝑑(𝑣) =

2 𝐸

𝑉

• All measures the `density’ of a graph

• 𝑑(𝐺) ≥ 𝛿(𝐺)
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Distance and diameter

• The distance 𝑑𝐺(𝑥, 𝑦) in 𝐺 of two vertices 𝑥, 𝑦 is the length of a 
shortest 𝑥~𝑦 path
• if no such path exists, we set 𝑑 𝑥, 𝑦 ≔ ∞

• The greatest distance between any two vertices in 𝐺 is the diameter 
of 𝐺
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Girth

• The minimum length of a cycle in a graph 𝐺 is the girth 𝑔(𝐺) of 𝐺

• Example: The Peterson graph is the unique 5-cage
• cubic graph (every vertex has degree 3)

• girth = 5

• smallest graph satisfies the above properties

• A tree has girth ∞
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Bipartite graphs

• Theorem (1.2.18, W, Kőnig 1936)
A graph is bipartite ⟺ it contains no odd cycle
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Trees
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Definition and properties

• A tree is a connected graph 𝑇 with no cycles

• Recall that a graph is bipartite ⟺ it has no odd cycle

• (Ex 3, S1.3.1, H) A tree of order 𝑛 ≥ 2 is a bipartite graph

• Recall that an edge 𝑒 is a bridge ⟺𝑒 lies on no cycle of 𝐺

• ⇒ Every edge in a tree is a bridge

• 𝑇 is a tree ⟺𝑇 is minimally connected, i.e. 𝑇 is connected but 𝑇 − 𝑒
is disconnected for every edge 𝑒 ∈ 𝑇

22



Equivalent definitions (Theorem 1.5.1, D)

• 𝑇 is a tree of order 𝑛
⇔ Any two vertices of 𝑇 are linked by a unique path in 𝑇
⇔𝑇 is minimally connected
• i.e. 𝑇 is connected but 𝑇 − 𝑒 is disconnected for every edge 𝑒 ∈ 𝑇

⇔𝑇 is maximally acyclic
• i.e. 𝑇 contains no cycle but 𝑇 + 𝑥𝑦 does for any non-adjacent vertices 𝑥, 𝑦 ∈
𝑇

⇔ (Theorem 1.10, 1.12, H) 𝑇 is connected with 𝑛 − 1 edges

⇔ (Theorem 1.13, H) 𝑇 is acyclic with 𝑛 − 1 edges
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Leaves of tree

• A vertex of degree 1 in a tree is called a leaf

• Theorem (1.14, H; Ex9, S1.3.2, H) Let 𝑇 be a tree of order 𝑛 ≥ 2. Then 
𝑇 has at least two leaves

• (Ex3, S1.3.2, H) Let 𝑇 be a tree with max degree ∆. Then 𝑇 has at least 
∆ leaves

• (Ex10, S1.3.2, H) Let 𝑇 be a tree of order 𝑛 ≥ 2. Then the number of 
leaves is

2 + 

𝑣:𝑑(𝑣)≥3

𝑑 𝑣 − 2

• (Ex8, S1.3.2, H) Every nonleaf in a tree is a cut vertex
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Properties

• The center of a tree

• Theorem (1.15, H) In any tree, the center is either a single vertex or a 
pair of adjacent vertices

• Tree as subgraphs

• Theorem (1.16, H) Let 𝑇 be a tree of order 𝑘 + 1 with 𝑘 edges. Let 𝐺
be a graph with 𝛿(𝐺) ≥ 𝑘. Then 𝐺 contains 𝑇 as a subgraph
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Spanning tree

• Given a graph 𝐺 and a subgraph 𝑇, 𝑇 is a spanning tree of 𝐺 if 𝑇 is a 
tree that contains every vertex of 𝐺

• Example: A telecommunications company tries to lay cable in a new 
neighbourhood

• Proposition (2.1.5c, W) Every connected graph contains a spanning 
tree
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Matchings
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Definitions

• A matching is a set of independent edges, in which no pair shares a 
vertex

• The vertices incident to the edges of a matching 𝑀 are 𝑀-saturated; 
the others are 𝑀-unsaturated

• A perfect matching in a graph is a matching that saturates every 
vertex

• Example (3.1.2, W) The number of perfect matchings in 𝐾𝑛,𝑛 is 𝑛!

• Example (3.1.3, W) The number of perfect matchings in 𝐾2𝑛 is 
𝑓𝑛 = 2𝑛 − 1 2𝑛 − 3 ⋯1 = 2𝑛 − 1 ‼
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Maximal/maximum matchings 极大/最大

• A maximal matching in a graph is a matching that cannot be enlarged 
by adding an edge

• A maximum matching is a matching of maximum size among all 
matchings in the graph

• Example: 𝑃3, 𝑃5

• Every maximum matching is maximal, but not every maximal 
matching is a maximum matching
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Stable matching

• A family ≤𝑣 𝑣∈𝑉 of linear orderings ≤𝑣 on 𝐸(𝑣) is a set of 
preferences for 𝐺

• A matching 𝑀 in 𝐺 is stable if for any edge 𝑒 ∈ 𝐸 ∖ 𝑀, there exists an 
edge 𝑓 ∈ 𝑀 such that 𝑒 and 𝑓 have a common vertex 𝑣 with 𝑒 <𝑣 𝑓
• Unstable: There exists 𝑥𝑦 ∈ 𝐸 ∖ 𝑀 but 𝑥𝑦′, 𝑥′𝑦 ∈ 𝑀 with 𝑥𝑦′ <𝑥 𝑥𝑦
𝑥′𝑦 <𝑦 𝑥𝑦
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Gale-Shapley Proposal Algorithm

• Input: Preference rankings by each of 𝑛 men and 𝑛 women

• Idea: Produce a stable matching using proposals by maintaining 
information about who has proposed to whom and who has rejected 
whom

• Iteration: Each man proposes to the highest woman on his preference 
list who has not previously rejected him
• If each woman receives exactly one proposal, stop and use the resulting 

matching 
• Otherwise, every woman receiving more than one proposal rejects all of them 

except the one that is highest on her preference list
• Every woman receiving a proposal says “maybe” to the most attractive 

proposal received
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Example
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Theoretical guarantee for the Proposal 
Algorithm
• Theorem (3.2.18, W, Gale-Shapley 1962) The Proposal Algorithm 

produces a stable matching

• Who proposes matters (jobs/candidates)

• When the algorithm runs with women proposing, every woman is as 
least as happy as when men do the proposing
• And every man is at least as unhappy
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Coloring

34



Motivation: Scheduling and coloring

• University examination timetabling
• Two courses linked by an edge if they have the 

same students

• Meeting scheduling
• Two meetings are linked if they have same 

member
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Definitions

• Given a graph 𝐺 and a positive integer 𝑘, a 𝑘-coloring is a function 
𝐾:𝑉(𝐺) ⟶ 1,… , 𝑘 from the vertex set into the set of positive 
integers less than or equal to 𝑘. If we think of the latter set as a set of 
𝑘 “colors,” then 𝐾 is an assignment of one color to each vertex. 

• We say that 𝐾 is a proper 𝑘-coloring of 𝐺 if for every pair 𝑢, 𝑣 of 
adjacent vertices, 𝐾(𝑢) ≠ 𝐾(𝑣) — that is, if adjacent vertices are 
colored differently. If such a coloring exists for a graph 𝐺, we say that 
𝐺 is 𝑘-colorable
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Chromatic number

• Given a graph 𝐺, the chromatic number of 𝐺, denoted by 𝜒(𝐺), is the 
smallest integer 𝑘 such that 𝐺 is 𝑘-colorable

• Examples

• (Ex5, S1.6.1, H) A graph 𝐺 of order at least two is bipartite ⟺ it is 2-
colorable
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Bounds on Chromatic number

• Theorem (1.41, H) For any graph 𝐺 of order 𝑛, 𝜒(𝐺) ≤ 𝑛

• It is tight since 𝜒 𝐾𝑛 = 𝑛

• 𝜒 𝐺 = 𝑛⟺𝐺 = 𝐾𝑛
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Greedy algorithm

• First label the vertices in some order—call them 𝑣1, 𝑣2, … , 𝑣𝑛
• Next, order the available colors (1,2, … , 𝑛) in some way

• Start coloring by assigning color 1 to vertex 𝑣1
• If 𝑣1 and 𝑣2 are adjacent, assign color 2 to vertex 𝑣2; otherwise, use color 1

• To color vertex 𝑣𝑖, use the first available color that has not been used for any 
of 𝑣𝑖’s previously colored neighbors
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Examples: Different orders result in different 
number of colors
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Bound of the greedy algorithm

• Theorem (1.42, H) For any graph G, 𝜒 𝐺 ≤ ∆ 𝐺 + 1

• The equality is obtained for complete graphs and cycles with an odd 
number of vertices
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Brooks’s theorem

• Theorem (1.43, H; 5.1.22, W; 5.2.4, D; Brooks 1941) 
If G is a connected graph that is neither an odd cycle or a complete 
graph, then 𝜒 𝐺 ≤ ∆ 𝐺
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Chromatic number and clique number

• The clique number 𝜔(𝐺) of a graph is defined as the order of the 
largest complete graph that is a subgraph of 𝐺

• Example: 𝜔 𝐺1 = 3,𝜔 𝐺2 = 4

• Theorem (1.44, H) For any graph 𝐺, 𝜒 𝐺 ≥ 𝜔(𝐺)

43



Chromatic number and independence 
number
• Theorem (1.45, H; Ex6, S1.6.2, H) For any graph 𝐺 of order 𝑛, 

𝑛

𝛼(𝐺)
≤ 𝜒 𝐺 ≤ 𝑛 + 1 − 𝛼(𝐺)
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The Four Color Problem

• Q: Is it true that the countries on any given map can be colored with 
four or fewer colors in such a way that adjacent countries are colored 
differently? 

• Theorem (Four Color Theorem) Every planar graph is 4-colorable

• Theorem (Five Color Theorem) (1.47, H) Every planar graph is 5-
colorable
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Definition and examples

• It is brought up by George David Birkhoff in 1912 in an attempt to prove 
the four color theorem

• Define 𝑐𝐺(𝑘) to be the number of different colorings of a graph 𝐺 using at 
most 𝑘 colors

• Examples:
• How many different colorings of 𝐾4 using 4 colors?

• 4 × 3 × 2 × 1

• 𝑐𝐾4 4 = 24

• How many different colorings of 𝐾4 using 6 colors?
• 6 × 5 × 4 × 3

• 𝑐𝐾4 6 = 360

• How many different colorings of 𝐾4 using 2 colors?
• 0

• 𝑐𝐾4 2 = 0
46



Examples

• If 𝑘 ≥ 𝑛
𝑐𝐾𝑛 𝑘 = 𝑘(𝑘 − 1)⋯ (𝑘 − 𝑛 + 1)

• If 𝑘 < 𝑛
𝑐𝐾𝑛 𝑘 = 0

• 𝐺 is 𝑘-colorable ⟺ 𝜒 𝐺 ≤ 𝑘 ⟺ 𝑐𝐺 𝑘 > 0

• 𝜒 𝐺 = min 𝑘 ≥ 1: 𝑐𝐺 𝑘 > 0
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Chromatic recurrence

• 𝐺 − 𝑒 and 𝐺/𝑒

• Theorem (1.48, H; 5.3.6, W) Let 𝐺 be a graph and 𝑒 be any edge of 𝐺. 
Then

𝑐𝐺 𝑘 = 𝑐𝐺−𝑒 𝑘 − 𝑐𝐺/𝑒 𝑘
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Use chromatic recurrence to compute 𝑐𝐺 𝑘

• Example: Compute 𝑐𝑃3 𝑘 = 𝑘4 − 3𝑘3 + 3𝑘2 − 𝑘

• Check: 𝑐𝑃3 1 = 0, 𝑐𝑃3 2 = 2
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More examples

• Path 𝑃𝑛−1 has 𝑛 − 1 edges (𝑛 vertices)
𝑐𝑃𝑛−1 𝑘 = 𝑘(𝑘 − 1)𝑛−1

• Any tree 𝑇 on 𝑛 vertices
𝑐𝑇 𝑘 = 𝑘(𝑘 − 1)𝑛−1

• Cycle 𝐶𝑛
𝑐𝐶𝑛 𝑘 = (𝑘 − 1)𝑛+ −1 𝑛(𝑘 − 1)

• When 𝑛 is odd, 𝑐𝐶𝑛 2 = 0, 𝑐𝐶𝑛 3 > 0

• When 𝑛 is even, 𝑐𝐶𝑛 2 > 0
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Properties of chromatic polynomials

• Theorem (1.49, H; Ex 3, S1.6.4, H) Let 𝐺 be a graph of order 𝑛
• 𝑐𝐺 𝑘 is a polynomial in 𝑘 of degree 𝑛

• The leading coefficient of 𝑐𝐺 𝑘 is 1

• The constant term of 𝑐𝐺 𝑘 is 0
• If 𝐺 has 𝑖 components, then the coefficients of 𝑘0, … , 𝑘𝑖−1 are 0

• 𝐺 is connected ⟺ the coefficient of 𝑘 is nonzero

• The coefficients of 𝑐𝐺 𝑘 alternate in sign

• The coefficient of the 𝑘𝑛−1 term is − 𝐸(𝐺)
• A graph 𝐺 is a tree ⟺𝑐𝐺 𝑘 = 𝑘(𝑘 − 1)𝑛−1

• A graph 𝐺 is complete ⟺𝑐𝐺 𝑘 = 𝑘(𝑘 − 1)⋯ (𝑘 − 𝑛 + 1)
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Planarity
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Definition and examples

• A graph 𝐺 is said to be planar if it can be drawn in the plane in such a 
way that pairs of edges intersect only at vertices

• If G has no such representation, 𝐺 is called nonplanar

• A drawing of a planar graph 𝐺 in the plane in which edges intersect 
only at vertices is called a planar representation (or a planar 
embedding) of 𝐺
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Region

• Given a planar representation of a graph 𝐺, a region is a maximal 
section of the plane in which any two points can be joined by a curve 
that does not intersect any part of 𝐺

• The region 𝑅7 is called the exterior (or outer) region
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An edge bounds a region

• An edge can come into contact with 
either one or two regions

• Example:
• Edge 𝑒1 is only in contact with one region 𝑆1
• Edge 𝑒2, 𝑒3 are only in contact with 𝑆2
• Each of other edges is in contact with two regions

• An edge 𝑒 bounds a region 𝑅 if 𝑒 comes into contact with 𝑅 and with 
a region different from 𝑅

• The bounded degree 𝑏(𝑅) is the number of edges that bound the 
region
• Example: 𝑏 𝑆1 = 𝑏 𝑆3 = 3, 𝑏 𝑆2 = 6
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The relationship between numbers of 
vertices, edges and regions
• The number of vertices 𝑛

• The number of edges 𝑚

• The number of regions 𝑟
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Euler’s formula

• Theorem (1.31, H; Euler 1748) If 𝐺 is a connected planar graph with 𝑛
vertices, 𝑚 edges, and 𝑟 regions, then

𝑛 −𝑚 + 𝑟 = 2
• Need Lemma: (Ex4, S1.5.1, H) Every tree is planar

• (Ex6, S1.5.2, H) Let 𝐺 be a planar graph with 𝑘 components. Then
𝑛 −𝑚 + 𝑟 = 𝑘 + 1
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𝐾3,3 is nonplanar

• Theorem (1.32, H) 𝐾3,3 is nonplanar
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Upper bound for 𝑚

• Theorem (1.33, H) If 𝐺 is a planar graph with 𝑛 ≥ 3 vertices and 𝑚
edges, then 𝑚 ≤ 3𝑛 − 6. Furthermore, if equality holds, then every 
region is bounded by 3 edges.

• (Ex4, S1.5.2, H) Let 𝐺 be a connected, planar, 𝐾3-free graph of order 
𝑛 ≥ 3. Then 𝐺 has no more than 2𝑛 − 4 edges

• Corollary (1.34, H) 𝐾5 is nonplanar

• Theorem (1.35, H) If 𝐺 is a planar graph , then 𝛿(𝐺) ≤ 5

• (Ex5, S1.5.2, H) If 𝐺 is bipartite planar graph, then 𝛿 𝐺 < 4
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Subdivision 细分

• A subdivision of an edge 𝑒 in 𝐺 is a substitution of a path for 𝑒

• A graph 𝐻 is a subdivision of 𝐺 if 𝐻 can be obtained from 𝐺 by a finite 
sequence of subdivisions

• Example:
• The graph on the right contains a subdivision of 𝐾5
• In the below, 𝐻 is a subdivision of 𝐺
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Kuratowski’s Theorem

• Theorem (1.39, H; Ex1, S1.5.4, H) A graph 𝐺 is planar ⟺ every 
subdivision of 𝐺 is planar

• Theorem (1.40, H; Kuratowski 1930) A graph is planar ⟺ it contains 
no subdivision of 𝐾3,3 or 𝐾5
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Ramsey Theory
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The friendship riddle

• Does every set of six people contain three mutual acquaintances or 
three mutual strangers? 

63
https://plus.maths.org/content/friends-and-strangers
Wikipedia

R(3,3)=6
R(3,4)=R(4,3)=9
R(3,5)=R(5,3)=14
R(3,6)=R(6,3)=18



(classical) Ramsey number

• A 2-coloring of the edges of a graph 𝐺 is any assignment of one of 
two colors of each of the edges of 𝐺

• Let 𝑝 and 𝑞 be positive integers. The (classical) Ramsey number 
associated with these integers, denoted by 𝑅(𝑝, 𝑞), is defined to be 
the smallest integer 𝑛 such that every 2-coloring of the edges of 𝐾𝑛
either contains a red 𝐾𝑝 or a blue 𝐾𝑞 as a subgraph

• It is a typical problem of extremal graph theory
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Examples

• 𝑅 1,3 = 1

• (Ex2, S1.8.1, H) 𝑅 1, 𝑘 = 1

• 𝑅 2,4 = 4

• (Ex3, S1.8.1, H) 𝑅 2, 𝑘 = 𝑘

• Theorem (1.61, H) 𝑅 3,3 = 6
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Examples (cont.)

• Theorem (1.62, H) 𝑅 3,4 = 9

• (Ex4, S1.8.1, H) 𝑅 𝑝, 𝑞 = 𝑅(𝑞, 𝑝)
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Bounds on Ramsey numbers

• Theorem (1.64, H; 2.28, H) If 𝑞 ≥ 2, 𝑞 ≥ 2, then
𝑅 𝑝, 𝑞 ≤ 𝑅 𝑝 − 1, 𝑞 + 𝑅 𝑝, 𝑞 − 1

Furthermore, if both terms on the RHS are even, then the inequality 
is strict

• Theorem (1.63, H; 2.29, H) 𝑅 𝑝, 𝑞 ≤
𝑝 + 𝑞 − 2
𝑝 − 1

• Theorem (1.65, H) For integer 𝑞 ≥ 3, 𝑅 3, 𝑞 ≤
𝑞2+3

2

• Theorem (1.66, H; Erdős and Szekeres 1935) 
If 𝑝 ≥ 3, 𝑅 𝑝, 𝑝 > 2𝑝/2
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Graph Ramsey Theory

• Given two graphs 𝐺 and 𝐻, define the graph Ramsey number 𝑅(𝐺, 𝐻)
to be the smallest value of 𝑛 such that any 2-coloring of the edges of 
𝐾𝑛 contains either a red copy of 𝐺 or a blue copy of 𝐻
• The classical Ramsey number 𝑅(𝑝, 𝑞) would in this context be written as 
𝑅(𝐾𝑝, 𝐾𝑞)

• Theorem (1.67, H) If 𝐺 is a graph of order 𝑝 and 𝐻 is a graph of order 
𝑞, then 𝑅(𝐺, 𝐻) ≤ 𝑅(𝑝, 𝑞)

• Theorem (1.68, H) Suppose the order of the largest 
component of 𝐻 is denoted as 𝐶(𝐻). 
Then 𝑅(𝐺, 𝐻) ≥ (𝜒(𝐺) − 1)(𝐶(𝐻) − 1) + 1
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Graph Ramsey Theory (cont.)

• Theorem (1.69, H) 𝑅 𝑇𝑚, 𝐾𝑛 = 𝑚 − 1 𝑛 − 1 + 1
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Connectivity
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Connected, connected component

• A graph 𝐺 is connected if 𝐺 ≠ ∅ and any two of its vertices are linked 
by a path

• A maximal connected subgraph of 𝐺 is a (connected) component
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Connected vs. minimal degree

• Proposition (1.3.15, W) If 𝛿(𝐺) ≥
𝑛−1

2
, then 𝐺 is connected

• (Ex16, S1.1.2, H) (1.3.16, W)

If 𝛿(𝐺) ≥
𝑛−2

2
, then 𝐺 need not be connected

• Extremal problems

• “best possible” “sharp”
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Add/delete an edge

• Components are pairwise disjoint; no two share a vertex

• Adding an edge decreases the number of components by 0 or 1
• ⇒ deleting an edge increases the number of components by 0 or 1

• Proposition (1.2.11, W) 
Every graph with 𝑛 vertices and 𝑘 edges has at least 𝑛 − 𝑘
components

• An edge 𝑒 is called a bridge if the graph 𝐺 − 𝑒 has more components

• Proposition (1.2.14, W) 
An edge 𝑒 is a bridge ⟺𝑒 lies on no cycle of 𝐺
• Or equivalently, an edge 𝑒 is not a bridge ⟺𝑒 lies on a cycle of 𝐺
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Cut vertex and connectivity

• A node 𝑣 is a cut vertex if the graph 𝐺 − 𝑣 has more 
components

• A proper subset S of vertices is a vertex cut set if the 
graph 𝐺 − 𝑆 is disconnected

• The connectivity, 𝜅(𝐺), is the minimum size of a cut 
set of 𝐺
• The graph is 𝑘-connected for any 𝑘 ≤ 𝜅(𝐺)
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Connectivity properties

• 𝜅 𝐾𝑛 : = 𝑛 − 1

• If 𝐺 is disconnected, 𝜅 𝐺 = 0
• ⇒ A graph is connected ⟺𝜅 𝐺 ≥ 1

• If 𝐺 is connected, non-complete graph of order 𝑛, then 
1 ≤ 𝜅 𝐺 ≤ 𝑛 − 2

• For convention, 𝜅 𝐾1 = 0

• Example (4.1.3, W) For 𝑘-dimensional cube 𝑄𝑘 = 0,1 𝑘, 𝜅 𝑄𝑘 = 𝑘
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Connectivity properties (cont.)

• 𝜅 𝐺 ≥ 2⟺ 𝐺 is connected and has no cut vertices

• A vertex lies on a cycle ⇏ it is not a cut vertex
• ⇒ (Ex13, S1.1.2, H) Every vertex of a connected graph 𝐺 lies on at least one 

cycle ⇏ 𝜅 𝐺 ≥ 2

• (Ex14, S1.1.2, H) 𝜅 𝐺 ≥ 2 implies 𝐺 has at least one cycle

• (Ex12, S1.1.2, H) 𝐺 has a cut vertex vs. 𝐺 has a bridge
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Connectivity and minimal degree

• (Ex15, S1.1.2, H) 

• 𝜅 𝐺 ≤ 𝛿(𝐺)

• If 𝛿 𝐺 ≥ 𝑛 − 2, then 𝜅 𝐺 = 𝛿(𝐺)
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Edge-connectivity

• A disconnecting set of edges is a set 𝐹 ⊆ 𝐸(𝐺) such that 𝐺 − 𝐹 has 
more than one component
• A graph is 𝑘-edge-connected if every disconnecting set has at least 𝑘 edges 

• The edge-connectivity of 𝐺, written 𝜆(𝐺), is the minimum size of a 
disconnecting set

• 𝜆 𝐺 = 0 if 𝐺 is disconnected

• Given 𝑆, 𝑇 ⊆ 𝑉(𝐺), we write [𝑆, 𝑇] for the set of edges having one 
endpoint in 𝑆 and the other in 𝑇
• An edge cut is an edge set of the form [𝑆, 𝑆𝑐] where 𝑆 is a nonempty proper 

subset of 𝑉(𝐺)

• Every edge cut is a disconnecting set, but not vice versa

• Every minimal disconnecting set of edges is an edge cut 78



Connectivity and edge-connectivity

• Proposition (1.4.2, D) If 𝐺 is non-trivial, then 𝜅(𝐺) ≤ 𝜆(𝐺) ≤ 𝛿(𝐺)

• Example (4.1.10, W) Possibility of 𝜅 𝐺 < 𝜆 𝐺 < 𝛿(𝐺)

• Theorem (4.1.11, W) If 𝐺 is a 3-regular graph, then 𝜅 𝐺 = 𝜆(𝐺)
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Properties of edge cut

• When 𝜆 𝐺 < 𝛿(𝐺), a minimum edge cut cannot isolate a vertex

• Similarly for edge cut

• Proposition (4.1.12, W) If 𝑆 is a set of vertices in a graph 𝐺, then

𝑆, 𝑆𝑐 =
𝑣∈𝑆

𝑑(𝑣) − 2𝑒(𝐺[𝑆])

• Corollary (4.1.13, W) If 𝐺 is a simple graph and 𝑆, 𝑆𝑐 < 𝛿(𝐺) for 
some nonempty proper subset 𝑆 of 𝑉(𝐺), then 𝑆 > 𝛿(𝐺)
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Bond

• An edge cut may contain another edge cut

• Example: 𝐾1,2 or star graphs

• A bond is a minimal nonempty edge cut

• Proposition (4.1.15, W) If 𝐺 is a connected graph, then an edge cut 𝐹
is a bond ⟺𝐺 − 𝐹 has exactly two components
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Blocks

• A block of a graph 𝐺 is a maximal connected subgraph of 𝐺 that has 
no cut-vertex. If 𝐺 itself is connected and has no cut-vertex, then 𝐺 is 
a block

• Example

• An edge of a cycle cannot itself be a block
• An edge is block ⟺ it is a bridge

• The blocks of a tree are its edges

• If a block has more than two vertices, then it is 2-connected
• The blocks of a loopless graph are its isolated vertices, bridges, and its 

maximal 2-connected subgraphs
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Intersection of two blocks

• Proposition (4.1.19, W) Two blocks in a graph share at most one 
vertex
• When two blocks share a vertex, it must be a cut-vertex

• Every edge is a subgraph with no cut-vertex and hence is in a block. 
Thus blocks in a graph decompose the edge set
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Block-cutpoint graph

• The block-cutpoint graph of a graph 𝐺 is a bipartite graph 𝐻 in which 
one partite set consists of the cut-vertices of 𝐺, and the other has a 
vertex 𝑏𝑖 for each block 𝐵𝑖 of 𝐺. We include 𝑣𝑏𝑖 as an edge of 𝐻 ⟺
𝑣 ∈ 𝐵𝑖

• (Ex34, S4.1, W) When 𝐺 is connected, its block-cutpoint graph is a 
tree
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Depth-first search (DFS)

• Depth-first search

• Lemma (4.1.22, W) If 𝑇 is a spanning tree of a connected graph grown 
by DFS from 𝑢, then every edge of 𝐺 not in 𝑇 consists of two vertices 
𝑣, 𝑤 such that 𝑣 lies on the 𝑢,𝑤-path in 𝑇
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Finding blocks by DFS

• Input: A connected graph 𝐺

• Idea: Build a DFS tree 𝑇 of 𝐺, discarding portions of 𝑇 as blocks are 
identified. Maintain one vertex called ACTIVE

• Initialization: Pick a root 𝑥 ∈ 𝑉(𝐻); make 𝑥 ACTIVE; set 𝑇 = {𝑥}

• Iteration: Let 𝑣 denote the current active vertex
• If 𝑣 has an unexplored incident edge 𝑣𝑤, then 

• If 𝑤 ∉ 𝑉(𝑇), then add 𝑣𝑤 to 𝑇, mark 𝑣𝑤 explored, make 𝑤 ACTIVE
• If 𝑤 ∈ 𝑉(𝑇), then 𝑤 is an ancestor of 𝑣; mark 𝑣𝑤 explored

• If 𝑣 has no more unexplored incident edges, then 
• If 𝑣 ≠ 𝑥 and 𝑤 is a parent of 𝑣, make 𝑤 ACTIVE. If no vertex in the current subtree 𝑇′

rooted at 𝑣 has an explored edge to an ancestor above 𝑤, then 𝑉(𝑇’) ∪ 𝑤 is the vertex 
set of a block; record this information and delete 𝑉(𝑇′)

• if 𝑣 = 𝑥, terminate
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Example
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Strong orientation

• Theorem (2.5, L) Let 𝐺 be a finite connected graph without bridges. 
Then 𝐺 admits a strong orientation, i.e. an orientation that is a 
strongly connected digraph
• A directed graph is strongly connected if for every pair of vertices (𝑣, 𝑤), 

there is a directed path from 𝑣 to 𝑤
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2-connected graphs

• Two paths from 𝑢 to 𝑣 are internally disjoint if they have no common 
internal vertex

• Theorem (4.2.2, W; Whitney 1932) 
A graph 𝐺 having at least three vertices is 2-connected ⟺ for each 
pair 𝑢, 𝑣 ∈ 𝑉(𝐺) there exist internally disjoint 𝑢, 𝑣-paths in 𝐺
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Equivalent definitions for 2-connected graphs

• Lemma (4.2.3, W; Expansion Lemma) If 𝐺 is a 𝑘-connected graph, and 
𝐺′ is obtained from 𝐺 by adding a new vertex 𝑦 with at least 𝑘
neighbors in 𝐺, then 𝐺′ is 𝑘-connected

• Theorem (4.2.4, W) For a graph G with at least three vertices, TFAE
• 𝐺 is connected and has no cut-vertex

• For all 𝑥, 𝑦 ∈ 𝑉(𝐺), there are internally disjoint 𝑥, 𝑦-paths

• For all 𝑥, 𝑦 ∈ 𝑉(𝐺), there is a cycle through 𝑥 and 𝑦

• 𝛿(𝐺) ≥ 1 and every pair of edges in 𝐺 lies on a common cycle
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Subdivision keeps 2-connectivity

• Corollary (4.2.6, W) If 𝐺 is 2-connected, then the graph 𝐺′ obtained 
by subdividing an edge of 𝐺 is 2-connected
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Ear decomposition

• An ear of a graph 𝐺 is a maximal path whose internal 
vertices have degree 2 in 𝐺

• An ear decomposition of 𝐺 is a decomposition 
𝑃0, … , 𝑃𝑘 such that 𝑃0 is a cycle and 𝑃𝑖 for 𝑖 ≥ 1
is an ear of 𝑃0 ∪⋯∪ 𝑃𝑖

• Theorem (4.2.8, W) 
A graph is 2-connected ⟺ it has an ear decomposition. 
Furthermore, every cycle in a 2-connected graph is the initial cycle in 
some ear decomposition
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Closed-ear

• A closed ear of a graph 𝐺 is a cycle 𝐶 such that all 
vertices of 𝐶 except one have degree 2 in 𝐺

• A closed-ear decomposition of 𝐺 is a decomposition 
𝑃0, … , 𝑃𝑘 such that 𝑃0 is a cycle and 𝑃𝑖 for 𝑖 ≥ 1 is an 
(open) ear or a closed ear in 𝑃0 ∪⋯∪ 𝑃𝑖
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Closed-ear decomposition

• Theorem (4.2.10, W) 
A graph is 2-edge-connected ⟺ it has a closed-ear decomposition. 
Every cycle in a 2-edge-connected graph is the initial cycle in some 
such decomposition
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Peterson graph

• The Peterson graph is the unique 5-cage
• cubic graph (every vertex has degree 3)

• girth = 5

• smallest graph satisfies the above properties

• 𝜅 = 3, 𝛼 = 4

• Radius=2, diameter=2

• Has a Hamiltonian path but no Hamiltonian cycle

• Chromatic number is 3

• Connectivity is 3, edge-connectivity is 3
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