Final Review

Shuai Li

John Hopcroft Center, Shanghai Jiao Tong University

https://shuaili8.github.io

https://shuaili8.github.io/Teaching/CS445/index.html

Exam code

- Exam on Dec 21 (7:30-)8:00-9:40 at Dong Shang Yuan 407 (lecture classroom)
- Finish the exam paper by yourself
- Allowed:
 - Calculator, watch (not smart)
- Not allowed:
 - Books, materials, cheat sheet, ...
 - Phones, any smart device
- No entering after 8:30
- Early submission period: 8:30--

Grading policy

- Attendance and participance: 5%
- Assignments: 35%
- Midterm exam: 20%
- Project: 10%
- Final exam: 30%

Covered topics

- Basics
 - Graphs, paths/walks/cycles, bipartite graphs
- Connectivity
- Trees
- Matchings
- Coloring
- Planarity
- Ramsey Theory

Basic Concepts

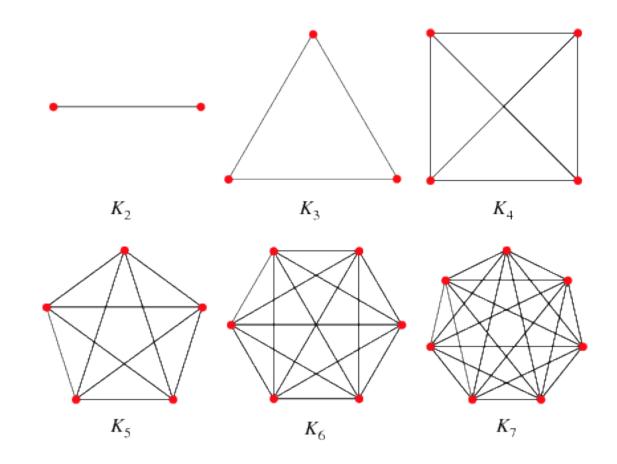
Graphs

- A graph G is a pair (V, E)
 - *V*: set of vertices
 - *E*: set of edges
 - $e \in E$ corresponds to a pair of endpoints $x, y \in V$
- Two graphs $G_1 = (V_1, E_1), G_1 = (V_2, E_2)$ are isomorphic if there is a bijection $f: V_1 \rightarrow V_2$ s.t. $e = \{a, b\} \in E_1 \iff f(e) := \{f(a), f(b)\} \in E_2$

We mainly focus on Simple graph: No loops, no multi-edges

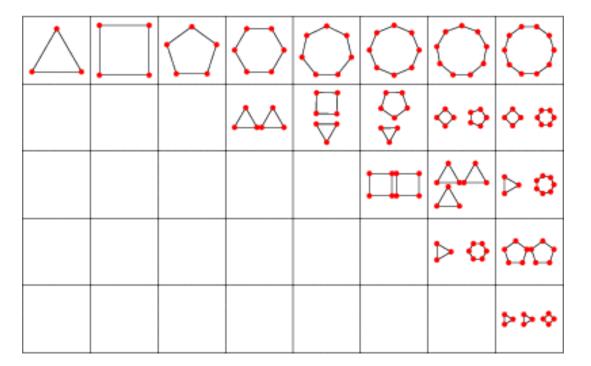
Example: Complete graphs

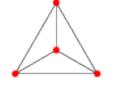
• There is an edge between every pair of vertices

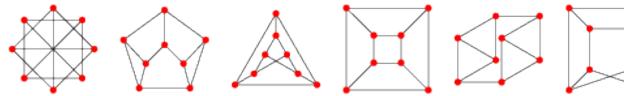


Example: Regular graphs

• Every vertex has the same degree

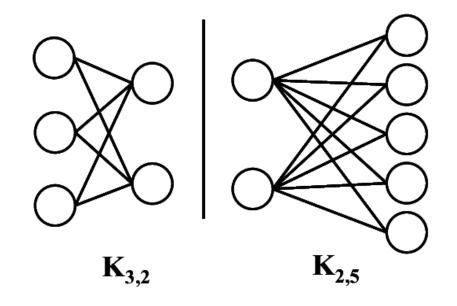






Example: Bipartite graphs

- The vertex set can be partitioned into two sets X and Y such that every edge in G has one end vertex in X and the other in Y
- Complete bipartite graphs



Example (1A, L): Peterson graph

• Show that the following two graphs are same/isomorphic

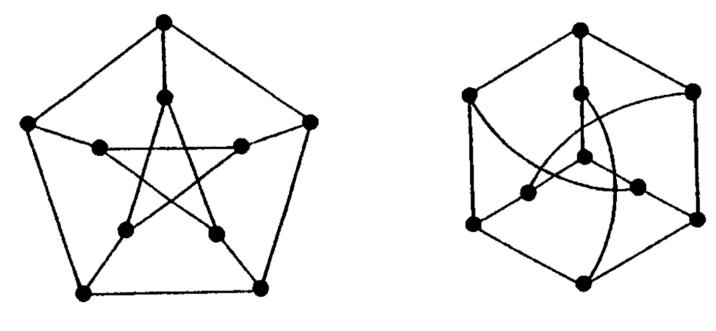
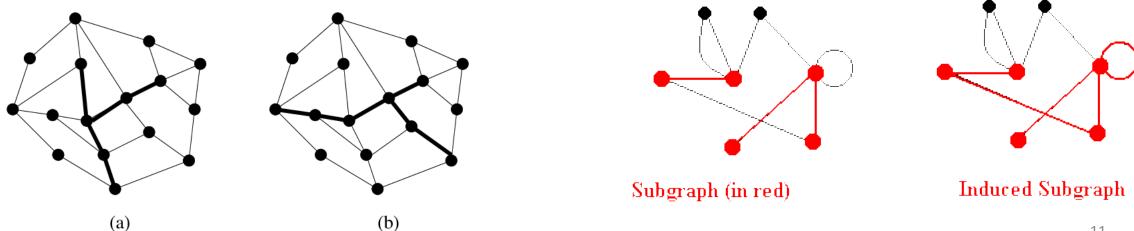


Figure 1.4

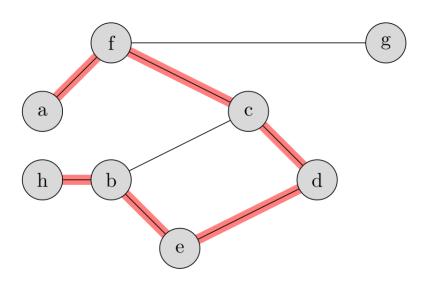
Subgraphs

- A subgraph of a graph G is a graph H such that $V(H) \subseteq V(G), E(H) \subseteq E(G)$ and the ends of an edge $e \in E(H)$ are the same as its ends in G
 - *H* is a spanning subgraph when V(H) = V(G)
 - The subgraph of G induced by a subset $S \subseteq V(G)$ is the subgraph whose vertex set is S and whose edges are all the edges of G with both ends in S



Paths (路径)

- A path is a nonempty graph P = (V, E) of the form $V = \{x_0, x_1, \dots, x_k\}$ $E = \{x_0 x_1, x_1 x_2, \dots, x_{k-1} x_k\}$ where the x_i are all distinct
- P^k : path of length k (the number of edges)

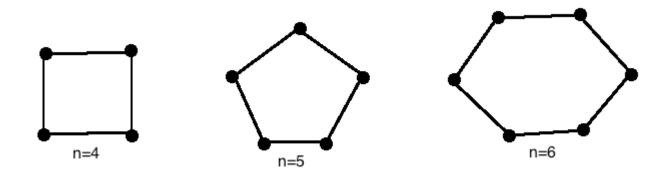


Walk (游走)

- A walk is a non-empty alternating sequence $v_0 e_1 v_1 e_2 \dots e_k v_k$
 - The vertices not necessarily distinct
 - The length = the number of edges
- Proposition (1.2.5, W) Every u-v walk contains a u-v path

Cycles (环)

- If $P = x_0 x_1 \dots x_{k-1}$ is a path and $k \ge 3$, then the graph $C \coloneqq P + x_{k-1} x_0$ is called a cycle
- C^k: cycle of length k (the number of edges/vertices)



• Proposition (1.2.15, W) Every closed odd walk contains an odd cycle

Neighbors and degree

- Two vertices $a \neq b$ are called adjacent if they are joined by an edge
 - *N*(*x*): set of all vertices adjacent to *x*
 - neighbors of *x*
 - A vertex is isolated vertex if it has no neighbors

Handshaking Theorem (Euler 1736)

- Theorem A finite graph G has an even number of vertices with odd degree.
- Proof The degree of x is the number of times it appears in the right column. Thus

$$\sum_{x \in V(G)} \deg(x) = 2|E(G)|$$

edge	ends
a	x, z
b	y,w
c	x, z
d	z,w
e	z, w
f	x,y
g	z, w

Degree

- Minimal degree of $G: \delta(G) = \min\{d(v): v \in V\}$
- Maximal degree of $G: \Delta(G) = \min\{d(v): v \in V\}$

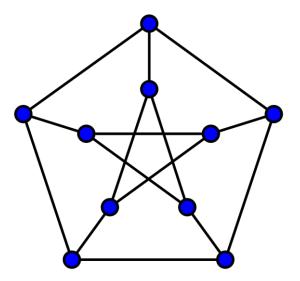
• Average degree of
$$G: d(G) = \frac{1}{|V|} \sum_{v \in V} d(v) = \frac{2|E|}{|V|}$$

- All measures the `density' of a graph
- $d(G) \ge \delta(G)$

Distance and diameter

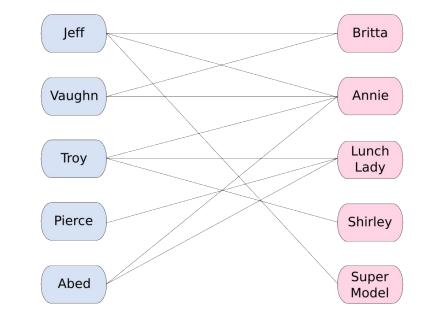
- The distance d_G(x, y) in G of two vertices x, y is the length of a shortest x~y path
 - if no such path exists, we set $d(x, y) \coloneqq \infty$
- The greatest distance between any two vertices in *G* is the diameter of *G*

- The minimum length of a cycle in a graph G is the girth g(G) of G
- Example: The Peterson graph is the unique 5-cage
 - cubic graph (every vertex has degree 3)
 - girth = 5
 - smallest graph satisfies the above properties
- A tree has girth ∞



Bipartite graphs

Theorem (1.2.18, W, Kőnig 1936)
 A graph is bipartite ⇔ it contains no odd cycle



Proposition (1.2.15, W) Every closed odd walk contains an odd cycle

Trees

Definition and properties

- A tree is a connected graph T with no cycles
- Recall that a graph is bipartite \Leftrightarrow it has no odd cycle
- (Ex 3, S1.3.1, H) A tree of order $n \ge 2$ is a bipartite graph
- Recall that an edge e is a bridge $\Leftrightarrow e$ lies on no cycle of G
- \Rightarrow Every edge in a tree is a bridge
- T is a tree \Leftrightarrow T is minimally connected, i.e. T is connected but T e is disconnected for every edge $e \in T$

Equivalent definitions (Theorem 1.5.1, D)

- *T* is a tree of order *n*
 - \Leftrightarrow Any two vertices of T are linked by a unique path in T
 - \Leftrightarrow T is minimally connected
 - i.e. T is connected but T e is disconnected for every edge $e \in T$
 - \Leftrightarrow *T* is maximally acyclic
 - i.e. T contains no cycle but T + xy does for any non-adjacent vertices $x, y \in T$
 - \Leftrightarrow (Theorem 1.10, 1.12, H) *T* is connected with n 1 edges
 - \Leftrightarrow (Theorem 1.13, H) *T* is acyclic with n 1 edges

Leaves of tree

- A vertex of degree 1 in a tree is called a leaf
- Theorem (1.14, H; Ex9, S1.3.2, H) Let T be a tree of order $n \ge 2$. Then T has at least two leaves
- (Ex3, S1.3.2, H) Let T be a tree with max degree Δ . Then T has at least Δ leaves
- (Ex10, S1.3.2, H) Let T be a tree of order $n \ge 2$. Then the number of leaves is

$$2 + \sum_{v:d(v) \ge 3} (d(v) - 2)$$

• (Ex8, S1.3.2, H) Every nonleaf in a tree is a cut vertex

Properties

- The center of a tree
- Theorem (1.15, H) In any tree, the center is either a single vertex or a pair of adjacent vertices
- Tree as subgraphs
- Theorem (1.16, H) Let T be a tree of order k + 1 with k edges. Let G be a graph with $\delta(G) \ge k$. Then G contains T as a subgraph

Spanning tree

- Given a graph G and a subgraph T, T is a spanning tree of G if T is a tree that contains every vertex of G
- Example: A telecommunications company tries to lay cable in a new neighbourhood
- Proposition (2.1.5c, W) Every connected graph contains a spanning tree

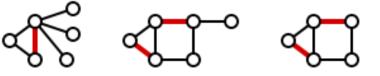
Matchings

Definitions

- A matching is a set of independent edges, in which no pair shares a vertex
- The vertices incident to the edges of a matching *M* are *M*-saturated; the others are *M*-unsaturated
- A perfect matching in a graph is a matching that saturates every vertex
- Example (3.1.2, W) The number of perfect matchings in $K_{n,n}$ is n!
- Example (3.1.3, W) The number of perfect matchings in K_{2n} is $f_n = (2n-1)(2n-3) \cdots 1 = (2n-1)!!$

Maximal/maximum matchings 极大/最大

- A maximal matching in a graph is a matching that cannot be enlarged by adding an edge
- A maximum matching is a matching of maximum size among all matchings in the graph
- Example: P_3 , P_5



• Every maximum matching is maximal, but not every maximal matching is a maximum matching

Stable matching

- A family (≤_v)_{v∈V} of linear orderings ≤_v on E(v) is a set of preferences for G
- A matching *M* in *G* is stable if for any edge $e \in E \setminus M$, there exists an edge $f \in M$ such that *e* and *f* have a common vertex *v* with $e <_v f$
 - Unstable: There exists $xy \in E \setminus M$ but $xy', x'y \in M$ with $xy' <_x xy x'y <_y xy$

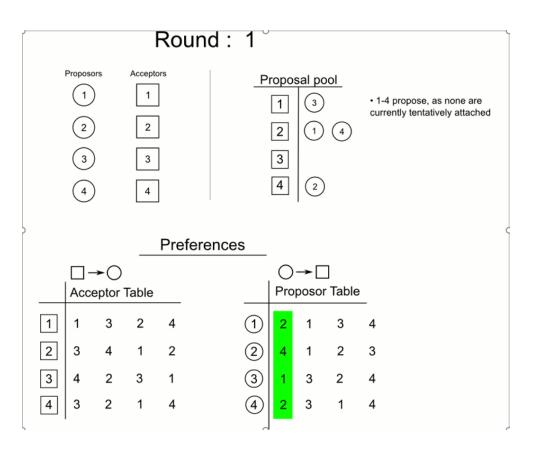
3.2.16. Example. Given men x, y, z, w, women a, b, c, d, and preferences listed below, the matching $\{xa, yb, zd, wc\}$ is a stable matching.

Men $\{x, y, z, w\}$ Women $\{a, b, c, d\}$ x: a > b > c > da: z > x > y > wy: a > c > b > db: y > w > x > zz: c > d > a > bc: w > x > y > zw: c > b > a > dd: x > y > z > w

Gale-Shapley Proposal Algorithm

- Input: Preference rankings by each of *n* men and *n* women
- Idea: Produce a stable matching using proposals by maintaining information about who has proposed to whom and who has rejected whom
- Iteration: Each man proposes to the highest woman on his preference list who has not previously rejected him
 - If each woman receives exactly one proposal, stop and use the resulting matching
 - Otherwise, every woman receiving more than one proposal rejects all of them except the one that is highest on her preference list
 - Every woman receiving a proposal says "maybe" to the most attractive proposal received

Example



Theoretical guarantee for the Proposal Algorithm

- Theorem (3.2.18, W, Gale-Shapley 1962) The Proposal Algorithm produces a stable matching
- Who proposes matters (jobs/candidates)
- When the algorithm runs with women proposing, every woman is as least as happy as when men do the proposing
 - And every man is at least as unhappy

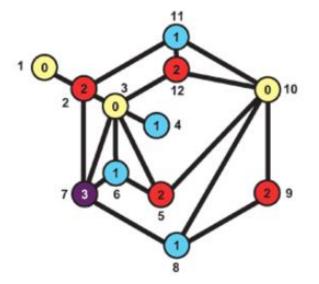
3.2.16. Example. Given men x, y, z, w, women a, b, c, d, and preferences listed below, the matching $\{xa, yb, zd, wc\}$ is a stable matching.

Men $\{x, y, z, w\}$ Women $\{a, b, c, d\}$ x: a > b > c > da: z > x > y > wy: a > c > b > db: y > w > x > zz: c > d > a > bc: w > x > y > zw: c > b > a > dd: x > y > z > w

Coloring

Motivation: Scheduling and coloring

- University examination timetabling
 - Two courses linked by an edge if they have the same students
- Meeting scheduling
 - Two meetings are linked if they have same member



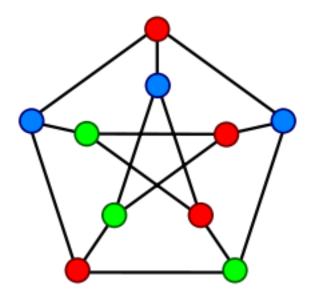
Definitions

- Given a graph G and a positive integer k, a k-coloring is a function
 K: V(G) → {1, ..., k} from the vertex set into the set of positive
 integers less than or equal to k. If we think of the latter set as a set of
 k "colors," then K is an assignment of one color to each vertex.
- We say that K is a proper k-coloring of G if for every pair u, v of adjacent vertices, $K(u) \neq K(v)$ that is, if adjacent vertices are colored differently. If such a coloring exists for a graph G, we say that G is k-colorable

Chromatic number

- Given a graph G, the chromatic number of G, denoted by $\chi(G)$, is the smallest integer k such that G is k-colorable
- Examples

 $\chi(C_n) = \begin{cases} 2 & \text{if } n \text{ is even,} \\ 3 & \text{if } n \text{ is odd,} \end{cases}$ $\chi(P_n) = \begin{cases} 2 & \text{if } n \ge 2, \\ 1 & \text{if } n = 1, \end{cases}$ $\chi(K_n) = n,$ $\chi(E_n) = 1,$ $\chi(K_{m,n}) = 2.$



 (Ex5, S1.6.1, H) A graph G of order at least two is bipartite ⇔ it is 2colorable

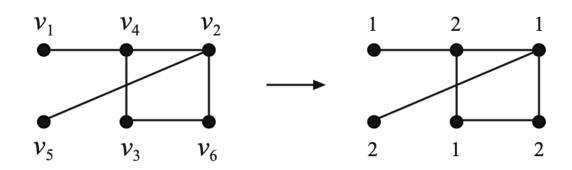
Bounds on Chromatic number

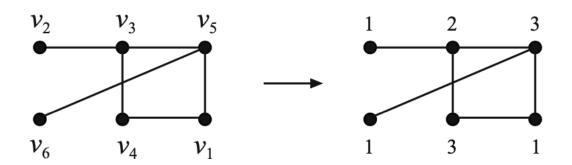
- Theorem (1.41, H) For any graph G of order $n, \chi(G) \leq n$
- It is tight since $\chi(K_n) = n$
- $\chi(G) = n \Leftrightarrow G = K_n$

Greedy algorithm

- First label the vertices in some order—call them v_1, v_2, \dots, v_n
- Next, order the available colors (1,2, ..., n) in some way
 - Start coloring by assigning color 1 to vertex v_1
 - If v_1 and v_2 are adjacent, assign color 2 to vertex v_2 ; otherwise, use color 1
 - To color vertex v_i , use the first available color that has not been used for any of v_i 's previously colored neighbors

Examples: Different orders result in different number of colors



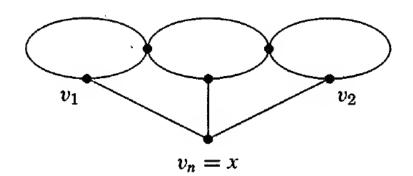


Bound of the greedy algorithm

- Theorem (1.42, H) For any graph G, $\chi(G) \leq \Delta(G) + 1$
- The equality is obtained for complete graphs and cycles with an odd number of vertices

Brooks's theorem

• Theorem (1.43, H; 5.1.22, W; 5.2.4, D; Brooks 1941) If G is a connected graph that is neither an odd cycle or a complete graph, then $\chi(G) \leq \Delta(G)$



Chromatic number and clique number

• The clique number $\omega(G)$ of a graph is defined as the order of the largest complete graph that is a subgraph of G

• Example: $\omega(G_1) = 3, \omega(G_2) = 4$



• Theorem (1.44, H) For any graph $G, \chi(G) \ge \omega(G)$

Chromatic number and independence number

• Theorem (1.45, H; Ex6, S1.6.2, H) For any graph G of order n, $\frac{n}{\alpha(G)} \leq \chi(G) \leq n + 1 - \alpha(G)$

The Four Color Problem

- Q: Is it true that the countries on any given map can be colored with four or fewer colors in such a way that adjacent countries are colored differently?
- Theorem (Four Color Theorem) Every planar graph is 4-colorable
- Theorem (Five Color Theorem) (1.47, H) Every planar graph is 5colorable

Theorem 1.35. If G is a planar graph, then G contains a vertex of degree at most five. That is, $\delta(G) \leq 5$.

Definition and examples

- It is brought up by George David Birkhoff in 1912 in an attempt to prove the four color theorem
- Define c_G(k) to be the number of different colorings of a graph G using at most k colors
- Examples:
 - How many different colorings of K_4 using 4 colors?
 - $4 \times 3 \times 2 \times 1$
 - $c_{K_4}(4) = 24$
 - How many different colorings of K_4 using 6 colors?
 - $6 \times 5 \times 4 \times 3$
 - $c_{K_4}(6) = 360$
 - How many different colorings of K_4 using 2 colors?
 - 0
 - $c_{K_4}(2) = 0$

Examples

• If $k \ge n$

$$c_{K_n}(k) = k(k-1)\cdots(k-n+1)$$

• If k < n

$$c_{K_n}(k)=0$$

- *G* is *k*-colorable $\Leftrightarrow \chi(G) \le k \iff c_G(k) > 0$
- $\chi(G) = \min\{k \ge 1: c_G(k) > 0\}$

Chromatic recurrence

• G - e and G/e

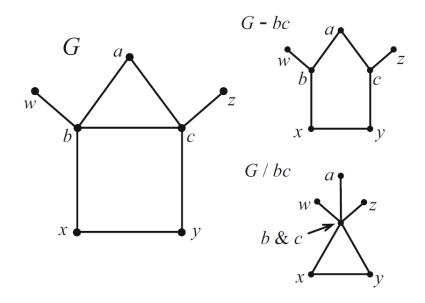


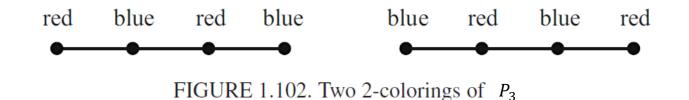
FIGURE 1.98. Examples of the operations.

• Theorem (1.48, H; 5.3.6, W) Let G be a graph and e be any edge of G. Then

$$c_G(k) = c_{G-e}(k) - c_{G/e}(k)$$

Use chromatic recurrence to compute $c_G(k)$

- Example: Compute $c_{P_3}(k) = k^4 3k^3 + 3k^2 k$
- Check: $c_{P_3}(1) = 0$, $c_{P_3}(2) = 2$



More examples

- Path P_{n-1} has n-1 edges (n vertices) $c_{P_{n-1}}(k) = k(k-1)^{n-1}$
- Any tree *T* on *n* vertices

$$c_T(k) = k(k-1)^{n-1}$$

• Cycle C_n

$$c_{C_n}(k) = (k-1)^n + (-1)^n (k-1)$$

- When *n* is odd, $c_{C_n}(2) = 0, c_{C_n}(3) > 0$
- When *n* is even, $c_{C_n}(2) > 0$

Properties of chromatic polynomials

- Theorem (1.49, H; Ex 3, S1.6.4, H) Let G be a graph of order n
 - $c_G(k)$ is a polynomial in k of degree n
 - The leading coefficient of $c_G(k)$ is 1
 - The constant term of $c_G(k)$ is 0
 - If G has i components, then the coefficients of k^0, \dots, k^{i-1} are 0
 - G is connected \Leftrightarrow the coefficient of k is nonzero
 - The coefficients of $c_G(k)$ alternate in sign
 - The coefficient of the k^{n-1} term is -|E(G)|
 - A graph G is a tree $\Leftrightarrow c_G(k) = k(k-1)^{n-1}$

 \Leftrightarrow (Theorem 1.10, 1.12, H) *T* is connected with n - 1 edges

• A graph G is complete $\Leftrightarrow c_G(k) = k(k-1)\cdots(k-n+1)$

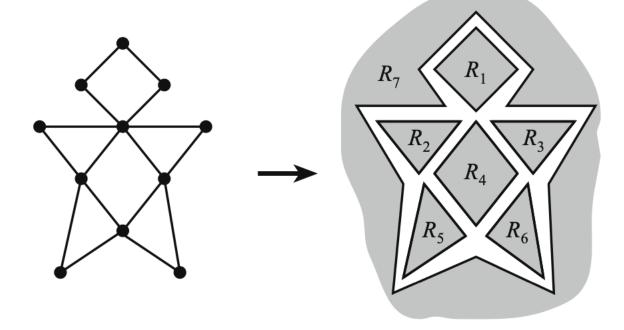
Planarity

Definition and examples

- A graph G is said to be planar if it can be drawn in the plane in such a way that pairs of edges intersect only at vertices
- If G has no such representation, G is called nonplanar
- A drawing of a planar graph G in the plane in which edges intersect only at vertices is called a planar representation (or a planar embedding) of G

Region

- Given a planar representation of a graph *G*, a region is a maximal section of the plane in which any two points can be joined by a curve that does not intersect any part of *G*
- The region R_7 is called the exterior (or outer) region



An edge bounds a region

- An edge can come into contact with either one or two regions
- Example:
 - Edge e_1 is only in contact with one region S_1
 - Edge e_2 , e_3 are only in contact with S_2
 - Each of other edges is in contact with two regions
- An edge *e* bounds a region *R* if *e* comes into contact with *R* and with a region different from *R*
- The bounded degree b(R) is the number of edges that bound the region

• Example:
$$b(S_1) = b(S_3) = 3, b(S_2) = 6$$

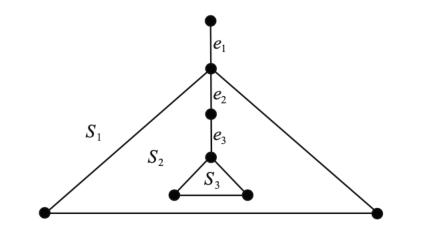
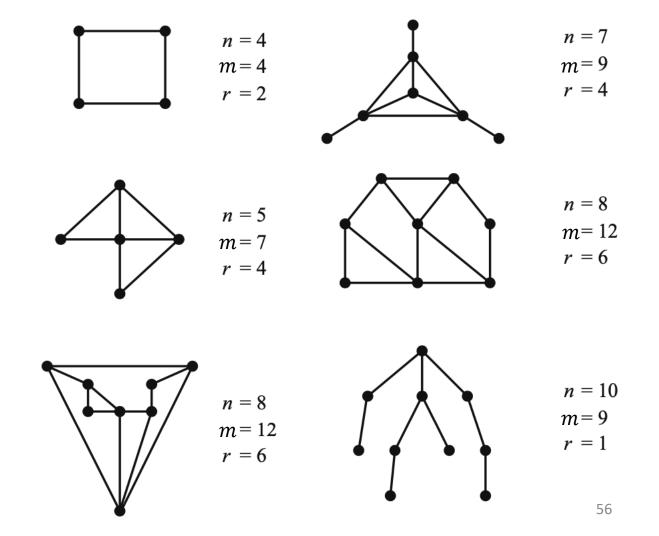


FIGURE 1.76. Edges e_1 , e_2 , and e_3 touch one region only.

The relationship between numbers of vertices, edges and regions

- The number of vertices n
- The number of edges m
- The number of regions r



Euler's formula

 Theorem (1.31, H; Euler 1748) If G is a connected planar graph with n vertices, m edges, and r regions, then

$$n-m+r=2$$

- Need Lemma: (Ex4, S1.5.1, H) Every tree is planar
- (Ex6, S1.5.2, H) Let G be a planar graph with k components. Then n m + r = k + 1

$K_{3,3}$ is nonplanar

• Theorem (1.32, H) $K_{3,3}$ is nonplanar

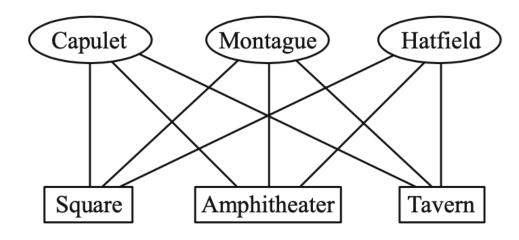


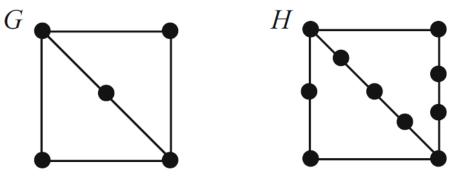
FIGURE 1.72. Original routes.

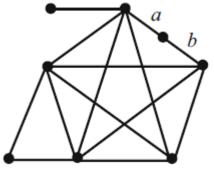
Upper bound for *m*

- Theorem (1.33, H) If G is a planar graph with $n \ge 3$ vertices and m edges, then $m \le 3n 6$. Furthermore, if equality holds, then every region is bounded by 3 edges.
- (Ex4, S1.5.2, H) Let G be a connected, planar, K_3 -free graph of order $n \ge 3$. Then G has no more than 2n 4 edges
- Corollary (1.34, H) K_5 is nonplanar
- Theorem (1.35, H) If G is a planar graph , then $\delta(G) \leq 5$
- (Ex5, S1.5.2, H) If G is bipartite planar graph, then $\delta(G) < 4$

Subdivision 细分

- A subdivision of an edge *e* in *G* is a substitution of a path for *e*
- A graph *H* is a subdivision of *G* if *H* can be obtained from *G* by a finite sequence of subdivisions
- Example:
 - The graph on the right contains a subdivision of K_5
 - In the below, H is a subdivision of G





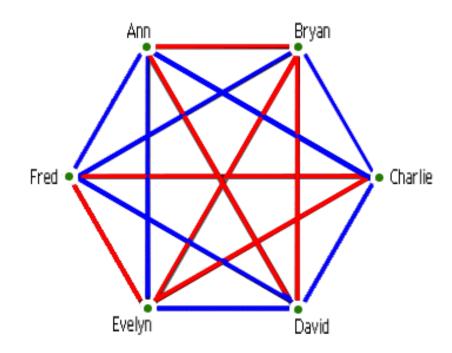
Kuratowski's Theorem

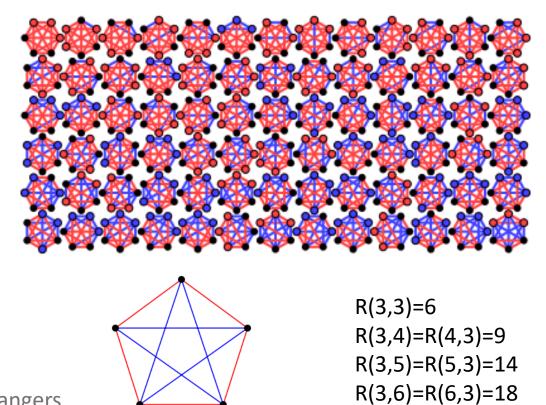
- Theorem (1.39, H; Ex1, S1.5.4, H) A graph G is planar \Leftrightarrow every subdivision of G is planar
- Theorem (1.40, H; Kuratowski 1930) A graph is planar ⇔ it contains no subdivision of K_{3,3} or K₅

Ramsey Theory

The friendship riddle

• Does every set of six people contain three mutual acquaintances or three mutual strangers?

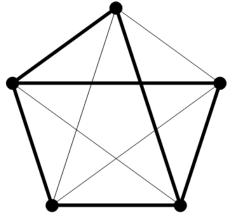




https://plus.maths.org/content/friends-and-strangers Wikipedia

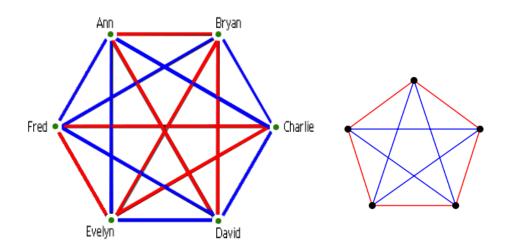
(classical) Ramsey number

- A 2-coloring of the edges of a graph *G* is any assignment of one of two colors of each of the edges of *G*
- Let p and q be positive integers. The (classical) Ramsey number associated with these integers, denoted by R(p,q), is defined to be the smallest integer n such that every 2-coloring of the edges of K_n either contains a red K_p or a blue K_q as a subgraph
- It is a typical problem of extremal graph theory



Examples

- R(1,3) = 1
- (Ex2, S1.8.1, H) R(1, k) = 1
- R(2,4) = 4
- (Ex3, S1.8.1, H) R(2, k) = k
- Theorem (1.61, H) R(3,3) = 6



Examples (cont.)

• Theorem (1.62, H) R(3,4) = 9

Theorem A finite graph G has an even number of vertices with odd degree

• (Ex4, S1.8.1, H) R(p,q) = R(q,p)

Values / known bounding ranges for Ramsey numbers	s $R(r, s)$ (sequence A212954 $rac{P}{P}$ in the OEIS)
---	--

r r	1	2	3	4	5	6	7	8	9	10
1	1	1	1	1	1	1	1	1	1	1
2		2	3	4	5	6	7	8	9	10
3			6	9	14	18	23	28	36	40–42
4				18	25 ^[10]	36–41	49–61	59 ^[14] –84	73–115	92–149
5					43–48	58–87	80–143	101–216	133–316	149 ^[14] –442
6						102–165	115 ^[14] –298	134 ^[14] _495	183–780	204–1171
7							205–540	217-1031	252-1713	292–2826
8								282-1870	329–3583	343-6090
9									565-6588	581-12677
10										798–23556

Bounds on Ramsey numbers

• Theorem (1.64, H; 2.28, H) If $q \ge 2, q \ge 2$, then $R(p,q) \le R(p-1,q) + R(p,q-1)$

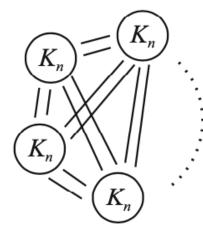
Furthermore, if both terms on the RHS are even, then the inequality

is strict Theorem A finite graph G has an even number of vertices with odd degree

- Theorem (1.63, H; 2.29, H) $R(p,q) \le {p+q-2 \choose p-1}$
- Theorem (1.65, H) For integer $q \ge 3$, $R(3,q) \le \frac{q^2+3}{2}$
- Theorem (1.66, H; Erdős and Szekeres 1935) If $p \ge 3$, $R(p,p) > \lfloor 2^{p/2} \rfloor$

Graph Ramsey Theory

- Given two graphs G and H, define the graph Ramsey number R(G, H) to be the smallest value of n such that any 2-coloring of the edges of K_n contains either a red copy of G or a blue copy of H
 - The classical Ramsey number R(p,q) would in this context be written as $R(K_p, K_q)$
- Theorem (1.67, H) If G is a graph of order p and H is a graph of order q, then $R(G, H) \leq R(p, q)$
- Theorem (1.68, H) Suppose the order of the largest component of H is denoted as C(H). Then $R(G,H) \ge (\chi(G) - 1)(C(H) - 1) + 1$



Graph Ramsey Theory (cont.)

• Theorem (1.69, H) $R(T_m, K_n) = (m-1)(n-1) + 1$

Theorem (1.45, H; Ex6, S1.6.2, H) For any graph G of order n, $\frac{n}{\alpha(G)} \le \chi(G) \le n + 1 - \alpha(G)$

A graph G is called k-critical if $\chi(G) = k$ and $\chi(G - v) < k$ for each vertex v of G.

(a) Find all 1-critical and 2-critical graphs.

(b) Give an example of a 3-critical graph.

(c) If G is k-critical, then show that G is connected.

(d) If G is k-critical, then show that $\delta(G) \ge k - 1$.

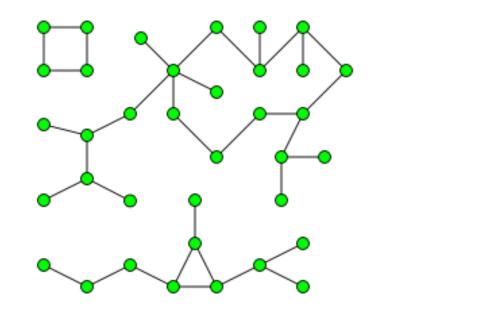
(e) Find all of the 3-critical graphs. Hint: Use part (d).

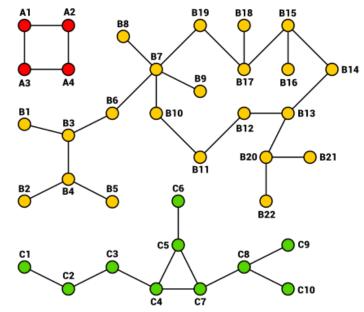
Theorem (1.16, H) Let T be a tree of order k + 1 with k edges. Let G be a graph with $\delta(G) \ge k$. Then G contains T as a subgraph

Connectivity

Connected, connected component

- A graph G is connected if G ≠ Ø and any two of its vertices are linked by a path
- A maximal connected subgraph of G is a (connected) component



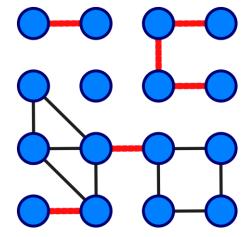


Connected vs. minimal degree

- Proposition (1.3.15, W) If $\delta(G) \ge \frac{n-1}{2}$, then G is connected
- (Ex16, S1.1.2, H) (1.3.16, W) If $\delta(G) \ge \frac{n-2}{2}$, then G need not be connected
- Extremal problems
- "best possible" "sharp"

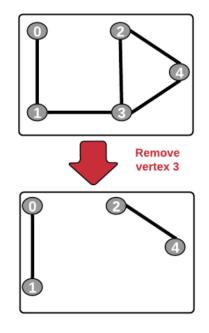
Add/delete an edge

- Components are pairwise disjoint; no two share a vertex
- Adding an edge decreases the number of components by 0 or 1
 - \Rightarrow deleting an edge increases the number of components by 0 or 1
- Proposition (1.2.11, W)
 Every graph with n vertices and k edges has at least n k components
- An edge e is called a bridge if the graph G e has more components
- Proposition (1.2.14, W) An edge e is a bridge $\Leftrightarrow e$ lies on no cycle of G
 - Or equivalently, an edge e is not a bridge $\Leftrightarrow e$ lies on a cycle of G



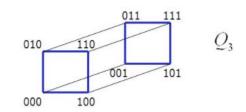
Cut vertex and connectivity

- A node v is a cut vertex if the graph G v has more components
- A proper subset S of vertices is a vertex cut set if the graph G S is disconnected
- The connectivity, κ(G), is the minimum size of a cut set of G
 - The graph is k-connected for any $k \leq \kappa(G)$



Connectivity properties

- $\kappa(K^n)$: = n-1
- If G is disconnected, $\kappa(G) = 0$
 - \Rightarrow A graph is connected $\Leftrightarrow \kappa(G) \ge 1$
- If G is connected, non-complete graph of order n, then $1 \le \kappa(G) \le n-2$
- For convention, $\kappa(K_1) = 0$
- Example (4.1.3, W) For k-dimensional cube $Q_k = \{0,1\}^k$, $\kappa(Q_k) = k$

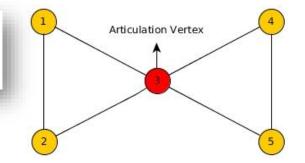


Connectivity properties (cont.)

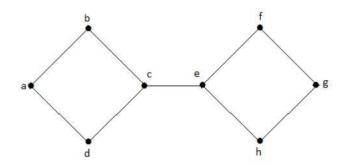
Proposition (1.2.14, W)

An edge e is a bridge $\Leftrightarrow e$ lies on no cycle of G

- Or equivalently, an edge e is not a bridge $\Leftrightarrow e$ lies on a cycle of G
- $\kappa(G) \ge 2 \Leftrightarrow G$ is connected and has no cut vertices

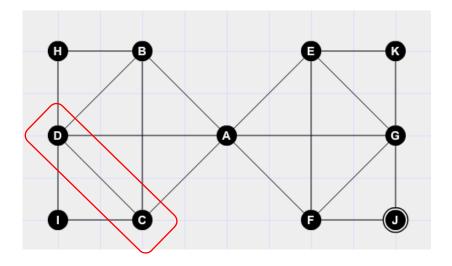


- A vertex lies on a cycle ⇒ it is not a cut vertex
 - \Rightarrow (Ex13, S1.1.2, H) Every vertex of a connected graph G lies on at least one cycle $\Rightarrow \kappa(G) \ge 2$
 - (Ex14, S1.1.2, H) $\kappa(G) \ge 2$ implies G has at least one cycle
- (Ex12, S1.1.2, H) G has a cut vertex vs. G has a bridge

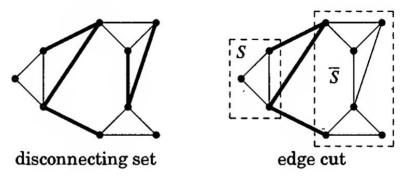


Connectivity and minimal degree

- (Ex15, S1.1.2, H)
- $\kappa(G) \leq \delta(G)$
- If $\delta(G) \ge n 2$, then $\kappa(G) = \delta(G)$

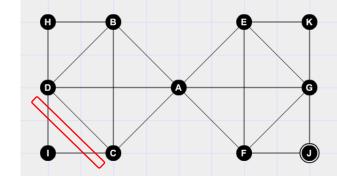


Edge-connectivity

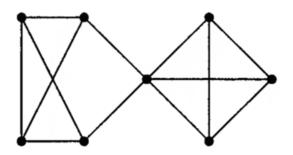


- A disconnecting set of edges is a set $F \subseteq E(G)$ such that G F has more than one component
 - A graph is *k*-edge-connected if every disconnecting set has at least *k* edges
 - The edge-connectivity of G, written λ(G), is the minimum size of a disconnecting set
 - $\lambda(G) = 0$ if G is disconnected
- Given $S, T \subseteq V(G)$, we write [S, T] for the set of edges having one endpoint in S and the other in T
 - An edge cut is an edge set of the form [*S*, *S^c*] where *S* is a nonempty proper subset of *V*(*G*)
- Every edge cut is a disconnecting set, but not vice versa
- Every minimal disconnecting set of edges is an edge cut

Connectivity and edge-connectivity



- Proposition (1.4.2, D) If G is non-trivial, then $\kappa(G) \leq \lambda(G) \leq \delta(G)$
- Example (4.1.10, W) Possibility of $\kappa(G) < \lambda(G) < \delta(G)$



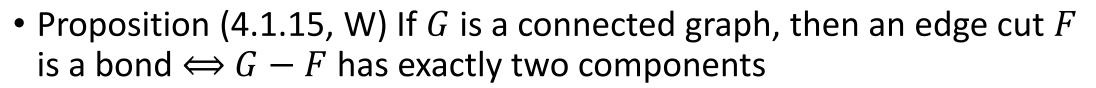
• Theorem (4.1.11, W) If G is a 3-regular graph, then $\kappa(G) = \lambda(G)$

Properties of edge cut

- When $\lambda(G) < \delta(G)$, a minimum edge cut cannot isolate a vertex
- Similarly for edge cut
- Proposition (4.1.12, W) If S is a set of vertices in a graph G, then $|[S, S^{c}]| = \sum_{v \in S} d(v) - 2e(G[S])$
- Corollary (4.1.13, W) If G is a simple graph and $|[S, S^c]| < \delta(G)$ for some nonempty proper subset S of V(G), then $|S| > \delta(G)$

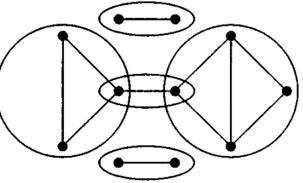
Bond

- An edge cut may contain another edge cut
- Example: $K_{1,2}$ or star graphs
- A bond is a minimal nonempty edge cut



Blocks

- A block of a graph G is a maximal connected subgraph of G that has no cut-vertex. If G itself is connected and has no cut-vertex, then G is a block
- Example
- An edge of a cycle cannot itself be a block
 - An edge is block \Leftrightarrow it is a bridge
 - The blocks of a tree are its edges
- If a block has more than two vertices, then it is 2-connected
 - The blocks of a loopless graph are its isolated vertices, bridges, and its maximal 2-connected subgraphs

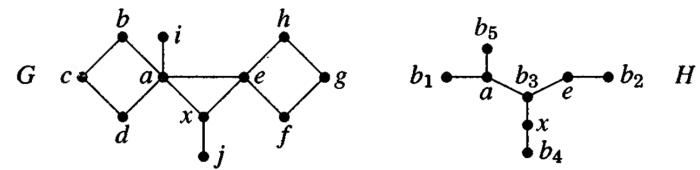


Intersection of two blocks

- Proposition (4.1.19, W) Two blocks in a graph share at most one vertex
 - When two blocks share a vertex, it must be a cut-vertex
- Every edge is a subgraph with no cut-vertex and hence is in a block. Thus blocks in a graph decompose the edge set

Block-cutpoint graph

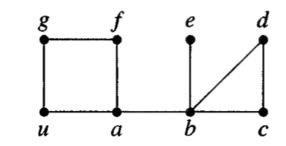
• The block-cutpoint graph of a graph G is a bipartite graph H in which one partite set consists of the cut-vertices of G, and the other has a vertex b_i for each block B_i of G. We include vb_i as an edge of $H \Leftrightarrow$ $v \in B_i$



• (Ex34, S4.1, W) When G is connected, its block-cutpoint graph is a tree

Depth-first search (DFS)

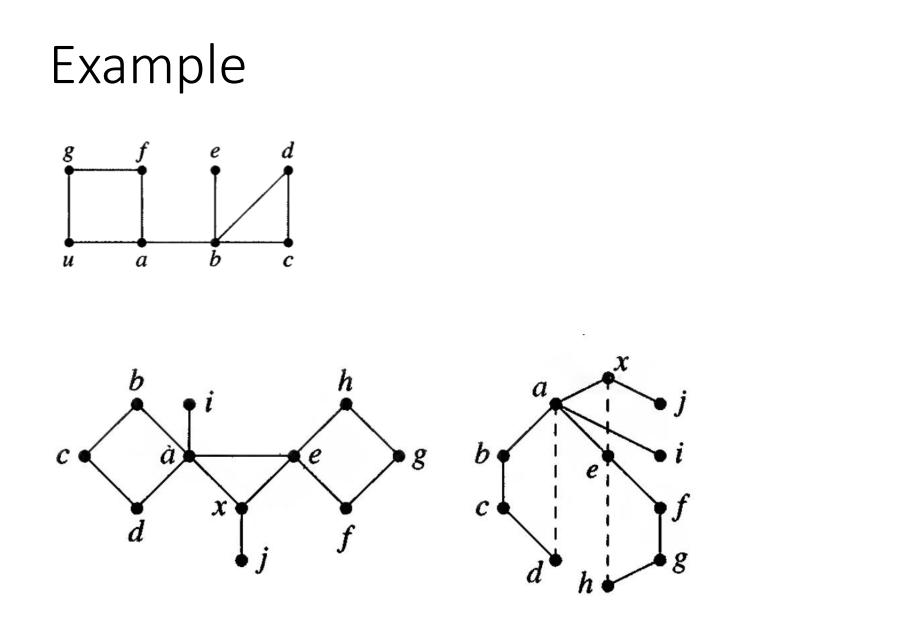
• Depth-first search



• Lemma (4.1.22, W) If T is a spanning tree of a connected graph grown by DFS from u, then every edge of G not in T consists of two vertices v, w such that v lies on the u, w-path in T

Finding blocks by DFS

- Input: A connected graph G
- Idea: Build a DFS tree T of G, discarding portions of T as blocks are identified. Maintain one vertex called ACTIVE
- Initialization: Pick a root $x \in V(H)$; make x ACTIVE; set $T = \{x\}$
- Iteration: Let v denote the current active vertex
 - If v has an unexplored incident edge vw, then
 - If $w \notin V(T)$, then add vw to T, mark vw explored, make w ACTIVE
 - If $w \in V(T)$, then w is an ancestor of v; mark vw explored
 - If v has no more unexplored incident edges, then
 - If $v \neq x$ and w is a parent of v, make w ACTIVE. If no vertex in the current subtree T' rooted at v has an explored edge to an ancestor above w, then $V(T') \cup \{w\}$ is the vertex set of a block; record this information and delete V(T')
 - if v = x, terminate



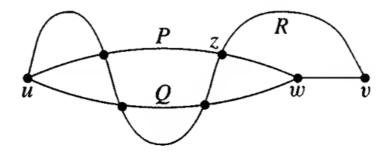
Strong orientation

- Theorem (2.5, L) Let G be a finite connected graph without bridges. Then G admits a strong orientation, i.e. an orientation that is a strongly connected digraph
 - A directed graph is strongly connected if for every pair of vertices (v, w), there is a directed path from v to w

 The blocks of a loopless graph are its isolated vertices, bridges, and its maximal 2-connected subgraphs

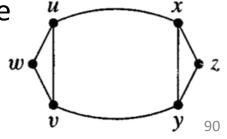
2-connected graphs

- Two paths from u to v are internally disjoint if they have no common internal vertex
- Theorem (4.2.2, W; Whitney 1932)
 A graph G having at least three vertices is 2-connected ⇔ for each pair u, v ∈ V(G) there exist internally disjoint u, v-paths in G



Equivalent definitions for 2-connected graphs

- Lemma (4.2.3, W; Expansion Lemma) If G is a k-connected graph, and G' is obtained from G by adding a new vertex y with at least k neighbors in G, then G' is k-connected
- Theorem (4.2.4, W) For a graph G with at least three vertices, TFAE
 - *G* is connected and has no cut-vertex
 - For all $x, y \in V(G)$, there are internally disjoint x, y-paths
 - For all $x, y \in V(G)$, there is a cycle through x and y
 - $\delta(G) \ge 1$ and every pair of edges in G lies on a common cycle



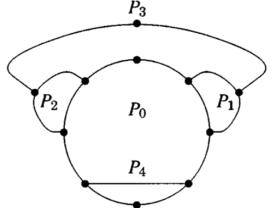
Subdivision keeps 2-connectivity

A subdivision of an edge e in G is a substitution of a path for e

• Corollary (4.2.6, W) If G is 2-connected, then the graph G' obtained by subdividing an edge of G is 2-connected

Ear decomposition

- An ear of a graph G is a maximal path whose internal vertices have degree 2 in G
- An ear decomposition of G is a decomposition P_0, \ldots, P_k such that P_0 is a cycle and P_i for $i \ge 1$ is an ear of $P_0 \cup \cdots \cup P_i$

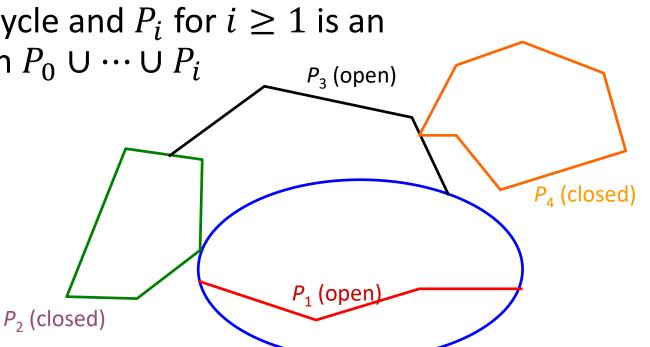


• Theorem (4.2.8, W)

A graph is 2-connected \Leftrightarrow it has an ear decomposition. Furthermore, every cycle in a 2-connected graph is the initial cycle in some ear decomposition

Closed-ear

- A closed ear of a graph G is a cycle C such that all vertices of C except one have degree 2 in G
- A closed-ear decomposition of G is a decomposition $P_0, ..., P_k$ such that P_0 is a cycle and P_i for $i \ge 1$ is an (open) ear or a closed ear in $P_0 \cup \cdots \cup P_i$ P_0 (open)



 P_0

Closed-ear decomposition

• Theorem (4.2.10, W)

A graph is 2-edge-connected \Leftrightarrow it has a closed-ear decomposition. Every cycle in a 2-edge-connected graph is the initial cycle in some such decomposition

Peterson graph

- The Peterson graph is the unique 5-cage
 - cubic graph (every vertex has degree 3)
 - girth = 5
 - smallest graph satisfies the above properties
- $\kappa = 3, \alpha = 4$
- Radius=2, diameter=2
- Has a Hamiltonian path but no Hamiltonian cycle
- Chromatic number is 3
- Connectivity is 3, edge-connectivity is 3

